亚洲综合伊人,成人欧美一区二区三区视频不卡,欧美日韩在线高清,日韩国产午夜一区二区三区,大胆美女艺术,一级毛片毛片**毛片毛片,你瞅啥图片

您當前的位置是:  首頁 > 資訊 > 國內(nèi) >
 首頁 > 資訊 > 國內(nèi) >

Gartner公布2021年十大數(shù)據(jù)分析技術(shù)趨勢

2021-05-20 15:16:49   作者:   來源:CTI論壇   評論:0  點擊:


  Gartner公布了2021年十大數(shù)據(jù)和分析(D&A)技術(shù)趨勢,這些趨勢可以幫助企業(yè)組織應(yīng)對各種變化、不確定性以及未來一年的潛在機遇。
  Gartner知名研究副總裁Rita Sallam表示:“COVID-19疫情顛覆企業(yè)組織的速度,迫使數(shù)據(jù)分析負責人必須采用適當?shù)墓ぞ吆土鞒虂戆l(fā)現(xiàn)關(guān)鍵技術(shù)趨勢,優(yōu)先應(yīng)對那些會對他們競爭優(yōu)勢帶來最大潛在影響的趨勢。”
  數(shù)據(jù)分析負責人應(yīng)該利用以下10大趨勢作為他們的關(guān)鍵投資,以提高預測、轉(zhuǎn)移和響應(yīng)能力。
  趨勢一:更智能的、更負責任的、可擴展的AI
  人工智能(AI)和機器學習(ML)正在發(fā)揮越來越大的影響力,這就需要企業(yè)運用新的技術(shù)以實現(xiàn)更智能的、數(shù)據(jù)消耗更少的、符合道德原則的、更具彈性的AI解決方案。企業(yè)組織通過部署更智能的、更負責任的、可擴展的AI,利用機器學習算法和可解釋的系統(tǒng),縮短實現(xiàn)價值的時間,并提高業(yè)務(wù)影響力。
  趨勢二:可組合式的數(shù)據(jù)分析
  開放的容器化分析架構(gòu)讓分析功能的可組合性更高?山M合式數(shù)據(jù)分析利用來自多個數(shù)據(jù)、分析和AI解決方案的組件,來快速構(gòu)建靈活且用戶友好的智能應(yīng)用,從而幫助數(shù)據(jù)分析負責人將洞察用于指導實際行動。
  隨著數(shù)據(jù)重心逐漸轉(zhuǎn)移到云端,可組合式的數(shù)據(jù)分析將成為一種更為敏捷的方式,去構(gòu)建實現(xiàn)了云市場、低代碼和無代碼解決方案的分析應(yīng)用。
  趨勢三:數(shù)據(jù)結(jié)構(gòu)是基礎(chǔ)
  隨著數(shù)字化程度逐漸提高和對消費者的約束越來越少,數(shù)據(jù)分析負責人開始越來越多地使用數(shù)據(jù)結(jié)構(gòu)來解決企業(yè)組織數(shù)據(jù)資產(chǎn)中日益突出的多樣性、分布式、規(guī)模化和復雜性等問題。
  數(shù)據(jù)結(jié)構(gòu)采用分析功能來持續(xù)監(jiān)控數(shù)據(jù)管道,利用對數(shù)據(jù)資產(chǎn)的持續(xù)分析,來支持各種數(shù)據(jù)的設(shè)計、部署和利用,從而將集成時間縮短了30%,部署時間縮短了30%,維護時間縮短了70%。
  趨勢四:從大數(shù)據(jù)到小數(shù)據(jù),再到寬數(shù)據(jù)
  新冠疫情造成業(yè)務(wù)發(fā)生極端的變化,這導致那些基于大量歷史數(shù)據(jù)的機器學習和AI模型都不再適用了。同時,由人類和AI共同做出決策變得更加復雜和苛刻了,這就要求數(shù)據(jù)分析負責人擁有更加多樣化的數(shù)據(jù),以更好地了解態(tài)勢。
  因此,數(shù)據(jù)分析負責人應(yīng)該選擇那些可以更有效利用可用數(shù)據(jù)的分析技術(shù)。他們依賴于所謂的“寬數(shù)據(jù)”,實現(xiàn)對各種小數(shù)據(jù)、大數(shù)據(jù)、非結(jié)構(gòu)化數(shù)據(jù)、結(jié)構(gòu)化數(shù)據(jù)來源的分析和協(xié)同處理,還有“小數(shù)據(jù)”,就是那些所需數(shù)據(jù)較少、但仍可以提供有用洞察的分析技術(shù)應(yīng)用。
  Sallam表示:“小而廣泛的數(shù)據(jù)方法提供了強大的分析和AI,同時減少了企業(yè)組織對大數(shù)據(jù)集的依賴。使用廣泛的數(shù)據(jù),讓企業(yè)組織可以獲得更豐富的、更完整的態(tài)勢感知或360度視圖,從而使他們能夠運用數(shù)據(jù)分析做出更好的決策。”
  趨勢五:XOps
  XOps(包括DataOps、MLOps、ModelOps和PlatformOps)的目標是使用DevOps最佳實踐來實現(xiàn)效率和規(guī)模經(jīng)濟,確?煽啃浴⒖芍赜眯院涂芍貜托,同時減少技術(shù)和流程的重復,實現(xiàn)了自動化。
  大多數(shù)分析和AI項目都失敗了,因為這些項目僅僅是在事后才解決可操作性等問題。如果數(shù)據(jù)分析負責人在大規(guī)模運營中使用XOps,那么他們將實現(xiàn)分析和AI資產(chǎn)的可再現(xiàn)性、可追溯性、完整性和可集成性。
  趨勢六:工程決策智能
  工程決策智能不僅適用于單個決策,還適用于決策序列,將多個決策分組到不同的業(yè)務(wù)流程中,甚至是突發(fā)決策和后果網(wǎng)絡(luò)。隨著決策變得越來越自動化和增強化,工程決策有望幫助數(shù)據(jù)分析負責人讓決策變得更加準確、可重復的、透明的和可追溯的。
  趨勢七:數(shù)據(jù)分析成為一項核心業(yè)務(wù)功能
  數(shù)據(jù)分析不再是次要的,而是變成了一項核心業(yè)務(wù)職能。在這種情況下,數(shù)據(jù)分析成為與業(yè)務(wù)成果保持一致的共享業(yè)務(wù)資產(chǎn),中央數(shù)據(jù)分析和聯(lián)合數(shù)據(jù)分析團隊之間能夠更好地協(xié)作,也打破了數(shù)據(jù)分析孤島。
  趨勢八:圖表與一切相關(guān)
  圖形構(gòu)成了很多現(xiàn)代數(shù)據(jù)分析功能的基礎(chǔ),使我們能夠在各種數(shù)據(jù)資產(chǎn)之間找到人、地方、事物、事件和位置之間的關(guān)系。數(shù)據(jù)分析負責人依靠圖形關(guān)系來快速回答復雜的業(yè)務(wù)問題,這些問題需要能夠理解上下文,理解多個實體之間的聯(lián)系和優(yōu)勢本質(zhì)。
  Gartner預測,到2025年圖形技術(shù)將用于80%的數(shù)據(jù)分析創(chuàng)新中,高于2021年的10%,這將促進整個企業(yè)組織的快速決策。
  趨勢九:增強型消費者的崛起
  如今,大多數(shù)企業(yè)用戶在使用預定義的儀表板和手動數(shù)據(jù)瀏覽功能,這可能導致錯誤的結(jié)論以及錯誤的決策和操作。以前我們花費在預定義儀表板上的操作時間,逐漸被自動的、對話式的、移動且動態(tài)生成的洞察所取代,這些洞察根據(jù)用戶的需求進行定制,并交付給他們的消費者。
  Sallam表示:“這將把分析能力轉(zhuǎn)移給信息消費者——也就是所謂的增強型消費者——使他們擁有以前只能由分析師和數(shù)據(jù)科學家才能使用的功能。”
  趨勢十:在邊緣的數(shù)據(jù)分析
  數(shù)據(jù)、分析和其他支持數(shù)據(jù)分析的技術(shù)越來越多地位于邊緣計算環(huán)境中,更接近物理環(huán)境和IT權(quán)限范圍之外的資產(chǎn)。據(jù)Gartner預測,到2023年超過50%的數(shù)據(jù)分析負責人的主要職責將包括在邊緣環(huán)境中創(chuàng)建、管理和分析數(shù)據(jù)。
  數(shù)據(jù)分析負責人可以利用這一趨勢來提升數(shù)據(jù)管理的靈活性、速度、治理和彈性。從支持實時事件分析,到實現(xiàn)“事物”的自主行為,各種各樣的使用場景正在吸引著人們對數(shù)據(jù)分析邊緣功能的興趣。
【免責聲明】本文僅代表作者本人觀點,與CTI論壇無關(guān)。CTI論壇對文中陳述、觀點判斷保持中立,不對所包含內(nèi)容的準確性、可靠性或完整性提供任何明示或暗示的保證。請讀者僅作參考,并請自行承擔全部責任。

專題

CTI論壇會員企業(yè)